16 Newton's method

Tuesday, October 27, 2020 2:23 AM

Finishing up convexity from last time

Let. 4.9/4.6 f has a minimum at $u \in E$ if $f(u) \leq f(v)$ $\forall v \in E$.

Strict minimum at $u \in E$ if f(u) < f(v) $\forall v \in E - \{u\}$.

f has a minimum at UEUSE w.r.t. U if $f(u) \leq f(v)$ to eU.

Street minimum at $u \in U \subseteq E$ w.r.t. U if f(u) < f(u) to $eU - \{u\}$.

We sometimes stress that these are global minimums (us. local)

Thm 4.5/4.11 Given any normed vector space E, let USE be nonempty and convex.

- (1) For any convex function $J:U\to\mathbb{R}$, $\forall u\in U$, if J has a local minimum at u in U, then J has a (global) minimum at u in U.
- (2) Any strict convex function $J:U\to R$ has at most one minimum (in U). If it does have a minimum, then it is a strict minimum (in U).
- (3) Let $J: \mathcal{N} \to \mathbb{R}$ be any function defined on an open subset $\mathcal{N} = \mathcal{E}$ with $U = \mathcal{N}$ convex and assume J is convex on U. $\forall u \in U$, if J(u) exists, then J has a minimum in u w.r.t. U if f $J(u)(v-u) \ge 0$ $\forall v \in U$.
- (4) If the convex subset U in (3) is open, then the above condition is equivalent to dJ(u)=0.

proof sketch? Repeated application of definitions and convexity.

Punchline is that for convex functions, local and global minina correspond.

Ex. 4.7/— Consider least squeres solution to $A \times = b$.

i.e. Find arg min $||Av - b||_2$.

Consider $J'(v) = \frac{1}{2} ||Av - b||_2^2 - \frac{1}{2} ||b||_2^2$, a quetretic function. $= \frac{1}{2} (Av - b)^T (Av - b) - \frac{1}{2} b^T b$ $= \frac{1}{2} (v^T A^T - b^T) (Av - b) - \frac{1}{2} b^T b$ $= \frac{1}{2} v^T A^T A v - v^T A^T b$

=> ,-(1- ATA - ATh

 $JJ(\mathbf{n}) = A^TA\mathbf{u} - A^{7}b.$ Since $A^{7}A$ is pos. semidefinite, J is convex, then the lost theorem implies that the (global) minima of J are solutions to $A^{T}A\mathbf{u} - A^{T}b = 0$ Recall SVD $A = VOU^{T}$ and $A^{+} = UD^{+}V^{T}$. Let $\mathbf{u} = A^{+}b$.

Then $UDV^{T}VDU^{T}UP^{+}V^{T}b = UDV^{T}b = A^{T}b$.

Conclusion: We want to find zeros of JJ=N-JE', as that fells us a lot about minima. Next time, generalizations of Newton's method.

Newton's method

Given $f: \mathbb{N} \to Y$, where \mathbb{N} is an open subset of a normed vector space X, and Y is a normed vector space, find

- (1) Sufficient conditions to guarantee the existence of a EN s, t. f(a) = 0.
- (2) An algorithm for approximating such a $\in \mathbb{N}$, i.e. a sequence $(x_{\mathcal{H}})$, $x_i \in \mathbb{N}$ s.t. $\lim_{i \to \infty} x_i = a$.

Recall: Newton's method.

Let X=Y=R, $\Lambda \subseteq R$ open, $f: \Lambda \to R$. Pick $x_0 \in R$ "close enough" to a zero a st. f(a)=0. Define $x_{k+1}=x_K=\frac{f(x_k)}{f'(x_k)}$, for $k \ge 0$ provided $f'(x_K) \ne 0$.

Note that XXXI is the O of the tangent line to f(x) at XX.

For arbitrary spaces: f: N -> Y, N = X, starting pt xo.

Let
$$x_{k+1} = x_k - (f'(x_k))^{-1} (f(x_k))$$

Need: Ω existence derivative to be invertible.

$$f: \Omega \to \mathbb{R}^n$$
, $\Omega \subseteq \mathbb{R}^n$.

Standard Newton's
$$X_{k+1} = X_{k} - (f'(x_{k}))^{-1} f(x_{k})$$

Now let
$$\Delta X_k = X_{k+1} - x_k$$
, so $X_{k+1} = x_k + \Delta x_k$.

=)
$$f'(x_K) \Delta x_K = -f(x_K) \in A_X = b$$
, solving linear system of equations.

Variant 1:
$$\left(\overline{J}(f)(x_{K})\right) \triangle \times_{K} = -f(x_{K})$$
 $\overline{J}(f)(x_{K}) = \left(\frac{\partial f_{i}}{\partial x_{j}}(x_{K})\right)_{i,j}$ $\overline{J}_{acoblan}$

Plain Newton's is expensive since we are computing a Jacobian and solving Ax=b at every iteration

Variant 2: Use the same Jacobian for p consecutive steps

Variant 3= Set
$$p = \infty$$

 $x_{k+1} = x_h - (f'(x_o))^{-1}(f(x_h))$

Variant 4: Replace $f'(x_0)$ entirely with an easy-to-invert A_0 . $\times_{K+1} = \times_K - A_0^{-1} f(x_K)$

Can further speed things up using LU factorization, or sometimes even $A_0 = I$.

Def. 5./ If X and Y are normed vector spaces, and $f: \mathcal{N} \to Y$, $\mathcal{N} \in X$ open, a generalized Newton method for finding $\hat{\mathcal{O}}$'s of f consists of:

- (1) A sequence of families $(A_K(x))$ of linear isomorphisms from X to Y, for all $x \in \mathbb{N}$ and all integers $k \ge 0$.
- (2) Some starting point x & E. .
- (3) A sequence (x_k) of points of N defined by $\chi = \chi (\Lambda (\chi))^{-1} f(x_k)$ $k \ge 0$.

(5) A sequence
$$(x_{K})$$
 or p_{0} y_{N} y_{N}

Usually, Ax(x) depends on f.

Ex 5.2 Lef
$$f(X) = A - X^{-1}$$
.
Then $f'_{X}(Y) = X^{-1}YX^{-1} \implies (f'_{X})^{-1}(Y) = XYX$

Newton's method:
$$X_{k+1} = X_{k} - (f'_{X_{k}})^{-1}(f(X_{k})) = X_{k} - X_{k}(A - X_{k}^{-1}) X_{k}$$
$$= X_{k}(2I - AX_{k}).$$

Of course, Newton's method doesn't always converge. Can ve give sufficient conditions? (Inspired by Newton - Kantorovich)

Thm 5.1/5.1 Let X be a Banach space, $f: \Omega \rightarrow Y$ differentiable on the open subset $N \subseteq X$, and assume \exists constants r, M, B > 0 s.t. If $B = \{ x \in X \mid \|x - x_0\| \le r \} \le \Omega,$

then (1)
$$\sup_{k \geq 0} \sup_{x \in \mathcal{B}} \left\| A_{\kappa}^{-1}(x) \right\|_{\mathcal{L}(Y;X)} \leq \mathcal{M},$$

(The inverse of the continuous) If near map is bounded in norm

(2)
$$B < l$$
 and sup sup $\| f'(x) - A_k(x') \|_{L(Y;X)} \le \frac{\beta}{M}$ (The difference of the map to the desirative map to the desirative is bounded in norm)

$$(3) \quad \|f(x_0)\| \leq \frac{r}{M} (1-R).$$

A condition on the niceness of the Instial guess

Then the sequence (x_n) defined by

$$\times_{k+1} = \times_{k} - A_{k}^{-1}(\times_{e}) (f(\times_{k})), \quad 0 \leq l \leq k$$

is entirely contained within B and converges to a, sh f(a)=0, and a is the only zero of f in B. Furthermore, the convergence is

is the only zero of f in B. Furthermore, the convergence is geometric, so $\|X_{x} - a\| \le \frac{\|X_{y} - X_{b}\|}{1 - \beta}$.

proof. Lemma 1: For all
$$k \ge 1$$
,

 $\|x_k - x_{k-1}\| \le M \|f(x_{k-1})\|$
 $\|x_k - x_o\| \le r$
 $\|f(x_k)\| \le \frac{B}{M} \|x_k - x_{k-1}\|$

proof. Induction on K.

Base case:
$$k=1$$

$$\frac{1}{x_1} = x_0 - A_0'(x_0)(f(x_0))$$
 by definition

$$\Rightarrow \qquad \qquad \chi_1 - \chi_0 = -A_0^{-1}(\chi_0)(f(\chi_0))$$

Also,
$$f(x_6) = -A_0(x_0)(x_1 - x_0)$$
 by rearranging the def. of x_1 .

$$=) 0 = -f(x_0) - A_0(x_0)(x_1 - x_0)$$

$$=) \quad f(x_1) = f(x_1) - f(x_0) - A_0(x_0)(x_1 - x_0).$$

By the MVT applied to
$$x \mapsto f(x) - A_0(x_0)(x)$$
, (Prop. 3.10)

$$\left\| f(x_1) \right\| \leq \sup_{X \in \mathcal{B}} \left\| f'(x_1) - A_0(x_0) \right\| \left\| x_1 - x_0 \right\| \leq \frac{\mathcal{B}}{M} \left\| x_1 - x_0 \right\|.$$

Induction step:
$$k \ge 2$$
.
 $\chi_{K} - \chi_{K-1} = -A_{K-1}^{-1} (\chi_{A}) (f(\chi_{K-1}))$, $0 \le l \le K-1$ by def.

$$=) \qquad ||\chi_{k} - \chi_{k-1}|| \leq M \| f(\chi_{k-1}) \|.$$

Then
$$\|x_k - x_{k-1}\| \leq \beta \|x_{k-1} - x_{k-2}\|$$
 (from induction hypo on $\|f(x_{k-1})\|$)

Thus,
$$\|\chi_{k} - \chi_{0}\| \leq \sum_{i=1}^{k} \|\chi_{3} - \chi_{j-i}\| \leq \left(\sum_{i=1}^{k} \beta^{j-i}\right) \|\chi_{1} - \chi_{0}\|$$

Thus,
$$\|x_{k} - x_{0}\| \leq \sum_{j=1}^{k} \|x_{j} - x_{j-1}\| \leq \left(\sum_{j=1}^{k} \beta^{j-1}\right) \|x_{1} - x_{0}\|$$

$$\leq \frac{\|x_{1} - x_{0}\|}{|-\beta|} \leq \frac{M}{|-\beta|} \|f(x_{0})\| \leq r$$
by original assumption. (3)

which implies that XX EB.

Furthermore, since
$$x_k - x_{h-1} = -A_{h-1}^{-1}(x_e)(f(x_{h-1}))$$
,

$$f(x_{k-1}) = -A_{k-1}(x_{k})(x_{k}-x_{k-1})$$

$$=) f(x_k) = f(x_k) - f(x_{k-1}) - A_{k-1}(x_k)(x_k - x_{k-1}).$$

Again by the MVT,

completing the induction.

Lemma 2: f has a zero in B, and the convergence is geometric.

proof.
$$\|x_{k+j} - x_h\| \leq \sum_{i=0}^{j-1} \|x_{k+i+1} - x_{k+i}\| \leq \beta^k \left(\sum_{i=0}^{j-1} \beta^i\right) \|x_i - x_o\| \leq \frac{\beta^h}{|-\beta|} \|x_i - x_o\|_s$$

for all $k \ge 0$ and $j \ge 0$, so (x_k) is a Cauchy sequence.

Since f is continuous on (by differentiability),

$$\|f(a)\| = \lim_{k\to\infty} \|f(x_k)\| = \frac{\beta}{M} \lim_{k\to\infty} \|x_k - x_{k-1}\| = 0$$

$$\Rightarrow$$
 $f(a) = 0$.

Furthermore
$$\|x_{k+\hat{j}} - x_k\| \leq \frac{\beta^k}{|-\beta^k|} \|x_i - x_b\|$$

Lemma 3: f has a unique zero in B.

proof- Suppose
$$f(a) = f(b) = 0$$
, $a, b \in B$.
Note $A_0^{-1}(x_0) (A_0(x_0) (b-a)) = b-a$,
so $b-a = -A_0^{-1}(x_0) (f(b) - f(a) - A_0(x_0)(b-a))$
 $\Rightarrow ||b-a|| \leq ||A_0^{-1}(x_0)|| \sup_{x \in B} ||f'(x) - A_0(x_0)|| ||b-a|| \leq B||b-a||$.
Since $0 < \beta < 1$, $a = b$.

Although we've given a set of sufficient conditions, these are actually quite stringent.

Ex. Theorem S,1 applies to $f(x)=x^2-d$, $\alpha>0$ for any $x_0>0$ s.d. $\frac{6}{7} \propto \leq \chi_0^2 \leq \frac{6}{5} \propto ,$ with $\beta = \frac{2}{5}$, $r = \frac{1}{6} \cdot x_0$, $M = \frac{3}{5x_0}$. So x_0 has to be very close to $\sqrt{\kappa}$.

Note: Newton's method may converge even outside these conditions.

By being less general, we can relax the conditions a bit.

The 5.2/5.2 Let X be a Banach space and let $f: \Omega \rightarrow Y$ be differentiable on the open subset $N \subseteq X$. If a $\in \mathbb{N}$ is a pt s.t. f(a) = 0, if f(a) is a linear isomorphism, and if II, 0<1<1 s.t. $\sup_{h\geq 0} \|A_h - f'(a)\|_{\mathcal{L}(X;Y)} \leq \frac{\lambda}{\|(f'(a))^{-1}\|_{\mathcal{L}(Y;X)}},$

then there is a closed ball B of center a s.t. \Xo \ B, the sequence $\chi_{k+1} = \chi_k - A_k'(f(x_k)), \quad k \ge 0,$ (xk) given by

is entirely contained within B and converges to a. Furthermore, a is the only 0 of f in B, and the convergence is geometric, i.e. $\|x_k - a\| \le \beta^k \|x_0 - a\|$, for some $\beta < 1$.

i.e. If we already know that we have a zero, then the isomorphisms Ax can be independent of x, assuming we start close to a.

... A. (x) = f/(x) in the standard fashion, we can jet

Or, if we use $A_k(x) = f'(x)$, in the standard fashion, we can jet much stronger results.

The 5.3 (Newton-Kan for wich) See textbook for statement.

Now we can return to optimization, where we want zeros of the derivative $J': \mathcal{N} \to E'$ of a function $J: \mathcal{N} \to \mathcal{R}$, $\mathcal{N} \subseteq E$.

Note J'' is a continuous bilinear form $J'': E \times E \to R$, which can be viewed as a linear map in L(E, E'). i.e. J''(u) is a linear form given by J''(u)(v) = J''(u, v).

The 5.4 Let E be a Banach space, let $J: \mathbb{N} \to \mathbb{R}$ be twice differentiable on the open subset $\mathbb{N} \leq \mathbb{E}$, and assume J constants r, M, B s.t. if $B = \{ \times \in \mathbb{E} \mid \| \times - \times_{\mathfrak{o}} \| \leq r \} \subseteq \mathbb{N}$,

then (1) $\sup_{k\geq 0} \sup_{x\in B} \|A_k^{-1}(x)\|_{\mathcal{L}(E;E')} \leq M$

(2) $\beta < 1$ and $\sup_{k \ge 0} \sup_{x \in B} \| \mathcal{J}''(x) - A_k(x') \|_{\mathcal{L}(E; E')} \le \frac{\beta}{M}$

(3) | J(x,) | 5 = (1-p)

Then the sequence (x_k) defined by $x_{k+1} = x_k - A_k^{-1}(x_k)(J'(x_k)), \quad 0 \le k \le k$

if entirely contained in B and converges to the unique zero a of J' geometrically.

Thm 5.5 Apply Thm 5.2 to J', and the $A_{K}(x)$ are isomorphisms in $\mathcal{L}(E,E')$ independent of $x \in \mathbb{N}$.

Note: When $E=R^n$, Thm 5.4 gives Heration steps $X_{k+1} = X_k - A_k^{-1} \left(x_k \right) \nabla J \left(x_k \right), \quad 0 \leq k \leq k,$ where $\nabla J \left(x_k \right)$ is the gradient of J at x_k (identifying $J \left(x_k \right)$). For Newton's original method, $A_k = J''$, so

Notes Page 8

 $V_{k} = V_{k} - \left(\nabla^{2} J(x_{k})\right)^{-1} \nabla J(x_{k}), \quad k \geq 0,$

For Newton's original method, n_k , n_k , n_k , n_k , n_k , $n_k = 0$, $n_k = 0$, $n_k = 0$, where $\nabla^2 J(x_k)$; the Hessian of J at x_k .

Newton's method plays an important role in convex optimization, in particular for interior pt methods. Also, variants of gradient descent can be viewed as generalized Newton's method.

Quadratic Optimization (d 6)

let's consider in detail a couple common classes of quadratic optimization, before moving on to general results in optimization theory.

We will discuss minimizing $Q(x) = \frac{1}{2}x^TAx^-x^Tb$ over (1) $x \in \mathbb{R}^n$ (2) $x \in \mathbb{R}^n$ subject to linear or affine constaints (3) x in the unit sphere.

This is important in practice because many energy functions can be defined in this form.

Def. 6.2 Given any symmetric $A \in \mathbb{R}^{n \times n}$, we write $A \succeq 0$ if A is possible f. $A \succeq 0$ if A is possible f.

Also, $A \succeq B$ if $A - B \succeq 0$, a partial order on matrices called the pos. semidef. cone ordering.

Prop 62 Given a quadratic function, $Q(x) = \frac{1}{2} x^T A x - x^T b,$

if A is symmetric and A>0, then Q(x) has a unique global minimum at the solution of the linear system Ax=b. The minimum value of Q(x) is $Q(A^{-1}b)=-\frac{1}{2}b^{T}A^{-1}b$.

Proof. Let $x=A^{-1}b$. Let $y \in \mathbb{R}^n$. Then $Q(y) - Q(x) = \frac{1}{2}y^{T}Ay - y^{T}b - \frac{1}{2}x^{T}Ax + x^{T}b$ $= \frac{1}{2}y^{T}Ay - y^{T}Ax + \frac{1}{2}x^{T}Ax$ $- \frac{1}{2}(y-x)^{T}A(y-x) \ge 0$

$$= \frac{1}{2} \gamma^{T} A \gamma^{-\gamma'} A x + \frac{1}{2} x^{7} x$$
$$= \frac{1}{2} (\gamma - x)^{T} A (\gamma - x) \ge 0$$

$$\Rightarrow$$
 Q(y) \geq Q(x).

$$\implies \min_{\mathbf{x} \in \mathbb{R}} \mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{A}^{-1}\mathbf{b}) = -\frac{1}{2}\mathbf{b}^{\dagger}\mathbf{A}^{-1}\mathbf{b}.$$

Aside: If $Q(x)=\frac{1}{2}x^TAx-x^{\dagger}b+c$, then argmin $Q(x)=A^{-1}b$, but $Q(A^{-1}b)=-\frac{1}{2}b^{\dagger}A^{-1}b+c$.

This allows us to recast a linear problem Ax=b as a variational problem (finding the min. of an energy function). Often, we have additional constraints

Pef. 6.3 The quadratic constrained minimization problem consists in minimizing $Q(x): \frac{1}{2}x^{\dagger}A^{\dagger}x - b^{\dagger}x \quad \text{subject to linear constraints} \quad B^{\dagger}x = f,$ where $A^{\dagger} \in \mathbb{R}^{m \times m}$ is SPD, $B \in \mathbb{R}^{m \times n}$ has rank n, and where $b, x \in \mathbb{R}^m$ and $f \in \mathbb{R}^n$.

Note that we use A-1 instead of A because this constrained minimization has an interpretation as a set of equilibrium equations that give A. Notation taken from [Strang 1986].

The natrix K=BTAB is the stiffness matrix of e.g. a spring-mass system, or electrical networks, etc.

Recall that we can use Lagrange nultipliers to solve this. The Lagrangian of the System is $L(x, \lambda) = Q(x) + \lambda^T (B^T x - f) = \frac{1}{2} x^T A^{-1} x - (b - B \lambda)^T x - \lambda^T f$.

A necessary condition is $\nabla L(x, \lambda) = 0$

$$\begin{cases} \frac{\partial L}{\partial x} (x, \lambda) = A^{-1}x - (b - B\lambda) = 0 \\ \frac{\partial L}{\partial x} (x, \lambda) = B^{7}x - f = 0 \end{cases}$$

=) B+ 4 B y = B+ 4 P - t $\Rightarrow \lambda = (\beta^{T} A \beta)^{-1} (\beta^{T} A b - f) , \quad \times = A(b - \beta \lambda).$ we let $e = b - B\lambda$, we get equilibrium equations $\begin{cases}
e = b - B\lambda \\
x = Ae
\end{cases}$ (Strang, 1986) Let us define the dual function G(1) as follows: $G(\lambda) = \frac{1}{2} (B\lambda - b)^T A (B\lambda - b) + \lambda^T f$. Note that min $L(x, \lambda) = L(A(L-B\lambda), \lambda)$ (by Prop 6.2) Clearly, $L(x, \lambda) \ge -G(\lambda)$ $\forall x, \lambda$ because we minimized over x to get G. $=-G(\lambda)$. But when $B^{\dagger} \times = f$, $L(x, \lambda) = Q(x)$, so min $Q(x) = \min_{x \mid B^{T}x = f} L(x, \lambda) \ge \min_{x} L(x, \lambda) = -G(\lambda)$ $=) \quad \min_{x \mid g \cdot \hat{x} = f} Q(x) \ge \max_{\lambda} - G(\lambda).$ We are seeing here a special case of duality, which we will cover in more letail later. The quadratic constrained minimization problem has a unique solution Prop. 6.3 (x, λ) given by $\begin{pmatrix} A^{-1} & C \\ P^{T} & C \end{pmatrix}\begin{pmatrix} \times \\ \lambda \end{pmatrix} = \begin{pmatrix} A \\ + \end{pmatrix}$ Furthermore, the component of the above solution is the unique value for which - G(X) is maximum. proof. Let's compute $Q(x) + G(\lambda)$ subject to $B^T x = f$. $Q(x) + G(\lambda) = \frac{1}{2} \times^7 \overline{A}_x^7 - b^7 \times + \frac{1}{2} (B\lambda - b)^7 A (B\lambda - b) + \lambda^7 f$ $= \frac{1}{2} \left(A^{-1} \times + \beta \lambda - b \right)^{T} A \left(A^{-1} \times + \beta \lambda - b \right) \geq 0$ and $Q(x) + G(\lambda) = 0$ iff $A^{-1}x + \beta\lambda - b = 0$ (=) A-1 x + B \ = b. $Q(x) = -G(\lambda)$ exactly when $A^{-1}x + B\lambda = b$ (i.e. $Q(x) = \min_{x \mid Bx = f} Q(x)$) min $Q(x) \ge max - G(\lambda)$ from above, so equality is achieved $\times |BX=f$ λ precisely at a constrained minimum of QBut and an unconstrained maximum of -6.

Notes Page 11

x/Blx-f w(x)- A

precisely at a constrained minimum of Q and an unconstrained maximum of -G.